Skip to main content

ICEM


Import formatted point data

File/import geometry/formatted point data

 Typically in an ASCII file
Specially formatted
Can be extrapolated to 3D, with scaling, twist, etc.
High or low curvature, etc.
May require different blocking strategy(Topology)
Requires some robust scripting

Formatted point data

File format, “.dat”[1]
The data is read in as Bspline data
The Formatted point data option converts formatted point data into the ANSYS ICEM CFD format.

Each surface's data is represented in the following way: The first line contains two numbers,
the number points for each curve, and the number of curves for each surfaces.
The remaining lines represent the points of the surface. An example is shown below:
*******
62 4
0.0682618 9.731237 0.5112982
-0.2821764 19.30035 0.5278823
-1.046131 9.840971 1.598944

2D to 3D Blocks

options

- MultiZone Fill

- Translate

- Rotate  

 

https://www.sharcnet.ca/Software/Ansys/15.0.7/en-us/help/icm_help/iblock_2dto3d.html

Reference




 

Comments

Popular posts from this blog

TUI Fluent

‎ Table of Contents 1. TUI 1.1. Examples 1.1.1. Steady 1.1.2. Unsteady 1.2. discretization schemes 1.3. Turbulence model 1.4. Reference 1.5. Save residual 1.6. Journal 1.6.1. record journal GUI 1.6.2. The interactive TUI inside Fluent helps: 1.7. define 1.7.1. boundary-conditions 1.8. change rotational velocity of moving reference frame 1.8.1. batch model 1.8.2. interactive console TUI 1.9. set background color 1.9.1. invalid command [background] 1.10. syntax 1.11. Batch model 1.12. Boundary condition 1.12.1. Inlet BC 1.13. Animation/residual/monitor on cluster 1.14. Solver 1.15. Change pressure-velocity-coupling model in batch mode 1.16. time step size 1.17. Modifying the View 1.18. initialization 1.19. discretization schemes 1.20. Set under relaxation 1.21. log of execute makefile 1 TUI keywords: Background Execution on Linux Systems, journal file Programming language : Scheme , as a Lisp d...

Fluent Error FAQ

  Process 1928: Received signal SIGSEGV. Running on windows Mesh size, 12M serial     Error:  received a fatal signal (Segmentation fault).     Error Object: #f parallel     select 4 processors         error information     Node 0: Process 1928: Received signal SIGSEGV.         Node 5: Process 2824: Received signal SIGSEGV.     MPI Application rank 0 exited before MPI_Finalize() with status 2      The fl process could not be started.         Reason         This is primarily a Windows issue.                 If running Fluent with -t1 or higher number of processes and leave the session for an extended period of time (2-20 hours), it receives the following message in the console: ...

Turbulent viscosity limited to viscosity ratio of 1e+05

** Turbulent viscosity limited to viscosity ratio of 1e+05 *** reason The possible *causes* for large turbulent viscosity ratio include: - Bad initial conditions for the turbulence quantities (k and e) - Improper turbulent boundary conditions - Skewed cells *** solution If the problem is not caused by *bad mesh*, then *the beginning of the phenomena* can usually be avoided by: -Turn off solving *turbulence equations* for the first 100-200 iterations -Turn on turbulence and continue iterations If the problem occurs *in the middle of the iteration process*, then use the following procedure: - Stop the iteration - Turn *off* all equations except the *turbulence equations* - Increase turbulence under relaxation factors (URFs) (k and e) to 1 and iterate for 20-50 iterations - *Turn back all equations* and reduce the turbulence URFs to 0.5-0.8 and then continue iterations - Repeat the above steps for several times For *faster convergence*, it might be useful to obtain an initial solution wit...