Skip to main content

File types in ICEM CFD

Project Settings (*.prj)
An ICEM CFD project file contains the information necessary to manage the data files associated with your project.
Tetin (*.tin)
Contains geometry entities, material points, parts associations, and global and entity mesh sizes.
Mesh (*.uns)
Includes details of the line, shell, and volume mesh elements of the project. Shell meshes are composed of triangular and/or quadrilateral elements; volume meshes may include tetrahedra, hexahedra, pyramids, and/or prisms.
Blocking (*.blk)
Includes details of the underlying framework used to create a structured hexahedral mesh in your
project. Blocking files can also be loaded from, or saved to, an unstructured mesh.
Attributes (*.atr) or (*.fbc)
Maintain the association of user-specified data for parts, element properties, loads, and constraints
with the nodes/elements of the mesh for a project.
Parameters (*.par)
Contains mesh-independent data such as material properties, local coordinate systems, solver analysis
setup, and run parameters. The data in the parameters file is cross-referred in the attributes file when
a set of parameters is associated with the nodes/elements of the mesh.
Cartesian (*crt)
Contains information regarding the Cartesian grid, if one has been created for your project.
Journal (*.jrf)
Contains a record of the operations performed (see General in the ANSYS ICEM CFD Help Manual).
Replay (*.rpl)
Contains a replay script (see Replay Scripts in the ANSYS ICEM CFD Help Manual).
Reference:
ANSYS ICEM CFD User's Manual

Comments

Popular posts from this blog

TUI Fluent

‎ Table of Contents 1. TUI 1.1. Examples 1.1.1. Steady 1.1.2. Unsteady 1.2. discretization schemes 1.3. Turbulence model 1.4. Reference 1.5. Save residual 1.6. Journal 1.6.1. record journal GUI 1.6.2. The interactive TUI inside Fluent helps: 1.7. define 1.7.1. boundary-conditions 1.8. change rotational velocity of moving reference frame 1.8.1. batch model 1.8.2. interactive console TUI 1.9. set background color 1.9.1. invalid command [background] 1.10. syntax 1.11. Batch model 1.12. Boundary condition 1.12.1. Inlet BC 1.13. Animation/residual/monitor on cluster 1.14. Solver 1.15. Change pressure-velocity-coupling model in batch mode 1.16. time step size 1.17. Modifying the View 1.18. initialization 1.19. discretization schemes 1.20. Set under relaxation 1.21. log of execute makefile 1 TUI keywords: Background Execution on Linux Systems, journal file Programming language : Scheme , as a Lisp d...

Fluent Error FAQ

  Process 1928: Received signal SIGSEGV. Running on windows Mesh size, 12M serial     Error:  received a fatal signal (Segmentation fault).     Error Object: #f parallel     select 4 processors         error information     Node 0: Process 1928: Received signal SIGSEGV.         Node 5: Process 2824: Received signal SIGSEGV.     MPI Application rank 0 exited before MPI_Finalize() with status 2      The fl process could not be started.         Reason         This is primarily a Windows issue.                 If running Fluent with -t1 or higher number of processes and leave the session for an extended period of time (2-20 hours), it receives the following message in the console: ...

reversed flow (backflow)

‎ Table of Contents 1. Reverse flow    reversed_flow 1.1. reasons 1.2. solutions 1 Reverse flow    reversed_flow It is common to encounter the regions of reversed flow at the initial stages of the simulation – This is normal. However, if the “reversed flow” warnings do not disappear as the simulation progresses, then one needs to address the issue and move the outlet boundaries to a location where the inflow is no longer encountered. Normally, it has to do with the outlet boundary condition. if you were to use the "pressure outlet" boundary condition at the outlet, your outlet must be set far away from the object of interest. In Fluent, I normally use the " outflow" boundary condition at the outlet and it does not give me reverse flow. 1.1 reasons It is virtually impossible to prescribe correct values for varying turbulence characteristics, temperature and species concentrations i...