Skip to main content

File types in ICEM CFD

Project Settings (*.prj)
An ICEM CFD project file contains the information necessary to manage the data files associated with your project.
Tetin (*.tin)
Contains geometry entities, material points, parts associations, and global and entity mesh sizes.
Mesh (*.uns)
Includes details of the line, shell, and volume mesh elements of the project. Shell meshes are composed of triangular and/or quadrilateral elements; volume meshes may include tetrahedra, hexahedra, pyramids, and/or prisms.
Blocking (*.blk)
Includes details of the underlying framework used to create a structured hexahedral mesh in your
project. Blocking files can also be loaded from, or saved to, an unstructured mesh.
Attributes (*.atr) or (*.fbc)
Maintain the association of user-specified data for parts, element properties, loads, and constraints
with the nodes/elements of the mesh for a project.
Parameters (*.par)
Contains mesh-independent data such as material properties, local coordinate systems, solver analysis
setup, and run parameters. The data in the parameters file is cross-referred in the attributes file when
a set of parameters is associated with the nodes/elements of the mesh.
Cartesian (*crt)
Contains information regarding the Cartesian grid, if one has been created for your project.
Journal (*.jrf)
Contains a record of the operations performed (see General in the ANSYS ICEM CFD Help Manual).
Replay (*.rpl)
Contains a replay script (see Replay Scripts in the ANSYS ICEM CFD Help Manual).
Reference:
ANSYS ICEM CFD User's Manual

Comments

Popular posts from this blog

TUI Fluent

‎ Table of Contents 1. TUI 1.1. Examples 1.1.1. Steady 1.1.2. Unsteady 1.2. discretization schemes 1.3. Turbulence model 1.4. Reference 1.5. Save residual 1.6. Journal 1.6.1. record journal GUI 1.6.2. The interactive TUI inside Fluent helps: 1.7. define 1.7.1. boundary-conditions 1.8. change rotational velocity of moving reference frame 1.8.1. batch model 1.8.2. interactive console TUI 1.9. set background color 1.9.1. invalid command [background] 1.10. syntax 1.11. Batch model 1.12. Boundary condition 1.12.1. Inlet BC 1.13. Animation/residual/monitor on cluster 1.14. Solver 1.15. Change pressure-velocity-coupling model in batch mode 1.16. time step size 1.17. Modifying the View 1.18. initialization 1.19. discretization schemes 1.20. Set under relaxation 1.21. log of execute makefile 1 TUI keywords: Background Execution on Linux Systems, journal file Programming language : Scheme , as a Lisp dial

Fluent Error FAQ

  Process 1928: Received signal SIGSEGV. Running on windows Mesh size, 12M serial     Error:  received a fatal signal (Segmentation fault).     Error Object: #f parallel     select 4 processors         error information     Node 0: Process 1928: Received signal SIGSEGV.         Node 5: Process 2824: Received signal SIGSEGV.     MPI Application rank 0 exited before MPI_Finalize() with status 2      The fl process could not be started.         Reason         This is primarily a Windows issue.                 If running Fluent with -t1 or higher number of processes and leave the session for an extended period of time (2-20 hours), it receives the following message in the console:                 The fl process could not be started.                 No other information about what timed out is provided, and only the cortex process is left running. This issue becomes more significant in light of the switch from serial to -t1.         IP interfaces on the machine

Turbulent viscosity limited to viscosity ratio of 1e+05

** Turbulent viscosity limited to viscosity ratio of 1e+05 *** reason The possible *causes* for large turbulent viscosity ratio include: - Bad initial conditions for the turbulence quantities (k and e) - Improper turbulent boundary conditions - Skewed cells *** solution If the problem is not caused by *bad mesh*, then *the beginning of the phenomena* can usually be avoided by: -Turn off solving *turbulence equations* for the first 100-200 iterations -Turn on turbulence and continue iterations If the problem occurs *in the middle of the iteration process*, then use the following procedure: - Stop the iteration - Turn *off* all equations except the *turbulence equations* - Increase turbulence under relaxation factors (URFs) (k and e) to 1 and iterate for 20-50 iterations - *Turn back all equations* and reduce the turbulence URFs to 0.5-0.8 and then continue iterations - Repeat the above steps for several times For *faster convergence*, it might be useful to obtain an initial solution wit